

Proton decay matrix elements from chirally symmetric lattice QCD

▷ Paul Cooney, The University of Edinburgh, RBC-UKQCD collaboration
 ▷ Workshop on Underground Detectors Investigating Grand Unification
 (UDiG) at Brookhaven National Laboratory

What to measure on the lattice

Simulation Details

Results

Non Perturbative Renormalization

Summary and Outlook

GUT Discrimination

$$\Gamma(p \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i C^i W_0^i(p \to m + \overline{l}) \right|^2$$

$$\Gamma(p \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i C^i W_0^i(p \to m + \overline{l}) \right|^2$$

$$\Gamma(p \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i \frac{C^i}{W_0^i} (p \to m + \overline{l}) \right|^2$$

$$\Gamma(\rho \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i C^i W_0^i(\rho \to m + \overline{l}) \right|^2$$

$$P_L\left[W_0^i(q^2) - i\not q W_q^i(q^2)\right] u(k,s) = \langle m|\mathcal{O}^i|N\rangle$$

$$\Gamma(p \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i C^i W_0^i(p \to m + \overline{l}) \right|^2$$

$$P_L \left[\frac{W_0^i(q^2)}{-i \not q W_a^i(q^2)} \right] u(k,s) = \langle m | \mathcal{O}^i | N \rangle$$

$$\Gamma(p \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i C^i W_0^i(p \to m + \overline{l}) \right|^2$$

$$P_L \left[W_0^i(q^2) - i \not q W_q^i(q^2) \right] u(k, s) = \langle m | \mathcal{O}^i | N \rangle$$

$$\Gamma(p \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i C^i W_0^i(p \to m + \overline{l}) \right|^2$$

$$P_L W_0^i(q^2) u(k,s) = \langle m | \mathcal{O}^i | N \rangle$$

$$\Gamma(p \to m + \overline{l}) = \left[\frac{m_p}{32\pi^2} \left(1 - \left(\frac{m_m}{m_p} \right)^2 \right)^2 \right] \left| \sum_i C^i W_0^i(p \to m + \overline{l}) \right|^2$$

The form factors can be related to a matrix element

$$P_L W_0^i(q^2) u(k,s) = \langle m | \mathcal{O}^i | N \rangle$$

The operators \mathcal{O}^i are given by

$$\mathcal{O}^{RL} = \epsilon^{abc} u^{a,T}(x,t) C P_R d^b(x,t) P_L u^c(x,t)
\mathcal{O}^{LL} = \epsilon^{abc} u^{a,T}(x,t) C P_L d^b(x,t) P_L u^c(x,t)$$

Define a general operator of the form

$$\mathcal{O}^{\Gamma_i\Gamma_j} = \epsilon^{abc} u^a(x,t) C \Gamma_i d^b(x,t) \Gamma_j u^c(x,t)$$

Define a general operator of the form

$$\mathcal{O}^{\Gamma_i \Gamma_j} = \epsilon^{abc} u^a(x, t) C \Gamma_i d^b(x, t) \Gamma_j u^c(x, t)$$

where Γ_i are matrices with two spin indices, labelled by,

$$\begin{array}{ccc} S = 1 & P = \gamma_5 \\ V = \gamma_{\mu} & A_{\mu} = \gamma_{\mu} \gamma_5 \\ T = \frac{1}{2} \{ \gamma_{\mu}, \gamma_{\nu} \} & \tilde{T} = \gamma_5 \frac{1}{2} \{ \gamma_{\mu}, \gamma_{\nu} \} \\ R = P_R = \frac{1}{2} (1 + \gamma_5) & L = P_L = \frac{1}{2} (1 - \gamma_5) \end{array}$$

Define a general operator of the form

$$\mathcal{O}^{\Gamma_i\Gamma_j} = \epsilon^{abc} u^a(x,t) C \Gamma_i d^b(x,t) \Gamma_j u^c(x,t)$$

where Γ_i are matrices with two spin indices, labelled by,

$$S = 1 P = \gamma_5 V = \gamma_{\mu} A_{\mu} = \gamma_{\mu}\gamma_5 T = \frac{1}{2}\{\gamma_{\mu}, \gamma_{\nu}\} \tilde{T} = \gamma_5 \frac{1}{2}\{\gamma_{\mu}, \gamma_{\nu}\} R = P_R = \frac{1}{2}(1 + \gamma_5) L = P_L = \frac{1}{2}(1 - \gamma_5)$$

Operators with this structure are also used later in nucleon correlation functions and in the non-perturbative renormalization

- ► Known as the *direct* method
- ► Three-point functions are required
- Computationally expensive

- ► Known as the *indirect* method
- Computationally cheaper
- ▶ Introduces an additional source of error

- Known as the direct method
- Three-point functions are required
- Computationally expensive

- ► Known as the *indirect* method
- Computationally cheaper
- ▶ Introduces an additional source of error

- Known as the direct method
- Three-point functions are required
- Computationally expensive

- ► Known as the *indirect* method
- Computationally cheaper
- ▶ Introduces an additional source of error

- Known as the direct method
- Three-point functions are required
- Computationally expensive

- Known as the indirect method
- Computationally cheaper
- Introduces an additional source of error

For $p \to \pi^0 + e^+$, the chiral perturbation theory gives

$$W_0^{RL}(p \to \pi^0 + e^+) = \alpha(1 + D + F)/\sqrt{2}f + \mathcal{O}(m_I^2/m_N^2)$$

$$W_0^{LL}(p \to \pi^0 + e^+) = \beta(1 + D + F)/\sqrt{2}f + \mathcal{O}(m_I^2/m_N^2)$$

For $p \to \pi^0 + e^+$, the chiral perturbation theory gives

$$\begin{array}{lcl} W_0^{RL}(p\to\pi^0+e^+) & = & \alpha(1+D+F)/\sqrt{2}f + \mathcal{O}(m_I^2/m_N^2) \\ W_0^{LL}(p\to\pi^0+e^+) & = & \beta(1+D+F)/\sqrt{2}f + \mathcal{O}(m_I^2/m_N^2) \end{array}$$

lpha and eta are low energy constants from the chiral lagrangian

For $p \to \pi^0 + e^+$, the chiral perturbation theory gives

$$\begin{array}{lcl} W_0^{RL}(p\to\pi^0+e^+) & = & \alpha(1+D+F)/\sqrt{2}f + \mathcal{O}(m_I^2/m_N^2) \\ W_0^{LL}(p\to\pi^0+e^+) & = & \beta(1+D+F)/\sqrt{2}f + \mathcal{O}(m_I^2/m_N^2) \end{array}$$

lpha and eta are low energy constants from the chiral lagrangian They can be calculated from two–point functions

$$\begin{array}{rcl} \langle 0|\mathcal{O}^{RL}|N\rangle & = & \alpha P_L u(k,s) \\ \langle 0|\mathcal{O}^{LL}|N\rangle & = & \beta P_L u(k,s) \end{array}$$

$$\mathit{f}_{\Gamma_{1}\Gamma_{2},\Gamma_{3}\Gamma_{4}}(t) = \sum_{x} \operatorname{tr} \left[\langle \mathcal{O}^{\Gamma_{1}\Gamma_{2}} \bar{\mathcal{O}}^{\Gamma_{3}\Gamma_{4}} \rangle P \right]$$

$$f_{\Gamma_1\Gamma_2,\Gamma_3\Gamma_4}(t) = \sum_x \operatorname{tr}\left[\langle \mathcal{O}^{\Gamma_1\Gamma_2} \bar{\mathcal{O}}^{\Gamma_3\Gamma_4} \rangle P\right]$$

$$\mathcal{O}^{\Gamma_1\Gamma_2} = \epsilon^{abc} u^a(x,t) C \Gamma_i d^b(x,t) \Gamma_j u^c(x,t)$$

$$f_{\Gamma_{1}\Gamma_{2},\Gamma_{3}\Gamma_{4}}(t) = \sum_{x} \operatorname{tr} \left[\langle \mathcal{O}^{\Gamma_{1}\Gamma_{2}} \bar{\mathcal{O}}^{\Gamma_{3}\Gamma_{4}} \rangle_{P} \right]$$

$$\mathcal{O}^{\Gamma_{1}\Gamma_{2}} = \epsilon^{abc} u^{a}(x,t) C \Gamma_{i} d^{b}(x,t) \Gamma_{j} u^{c}(x,t)$$

$$P = \frac{1}{2} (1 + \gamma_{4})$$

$$\textit{f}_{\Gamma_{1}\Gamma_{2},\Gamma_{3}\Gamma_{4}}(\textit{t}) = \sum_{x} \operatorname{tr} \left[\langle \mathcal{O}^{\Gamma_{1}\Gamma_{2}} \bar{\mathcal{O}}^{\Gamma_{3}\Gamma_{4}} \rangle \textit{P} \right]$$

$$\mathcal{O}^{\Gamma_1\Gamma_2} = \epsilon^{abc} u^a(x,t) C \Gamma_i d^b(x,t) \Gamma_j u^c(x,t)$$

$$P=\frac{1}{2}(1+\gamma_4)$$

Example: the proton correlation function

$$\sum_{x} \langle J_{p}(x,t) \bar{J}_{p}(0) \rangle = f_{PS,PS}(t)$$

Strategy:

 \triangleright First find m_N from a correlated fit to the effective mass

$$m_{ ext{eff}}(t) = \log\left(rac{f_{PS,PS}(t)}{f_{PS,PS}(t+1)}
ight)
ightarrow m_{N} \quad t \gg 0$$

 \triangleright Then find G_N from a correlated fit to an effective amplitude

$$G_{N, ext{eff}} = \sqrt{2f_{PS,PS}\,\mathrm{e}^{m_N t}}
ightarrow G_N \quad t \gg 0$$

Finally to calculate α and β we use a ratio of two–point functions

$$R_{\alpha}(t) = 2G_N \frac{f_{RL,PS}(t)}{f_{PS,PS}(t)} \rightarrow \alpha \quad R_{\beta}(t) = 2G_N \frac{f_{LL,PS}(t)}{f_{PS,PS}(t)} \rightarrow R_{\beta}(t)$$

Strategy:

 \triangleright First find m_N from a correlated fit to the effective mass

$$m_{ ext{eff}}(t) = \log\left(\frac{f_{PS,PS}(t)}{f_{PS,PS}(t+1)}\right)
ightarrow m_{N} \quad t \gg 0$$

► Then find G_N from a correlated fit to an effective amplitude

$$G_{N,\text{eff}} = \sqrt{2f_{PS,PS} e^{m_N t}} \rightarrow G_N \quad t \gg 0$$

▶ Finally to calculate α and β we use a ratio of two–point functions

$$R_{\alpha}(t) = 2G_N \frac{f_{RL,PS}(t)}{f_{PS,PS}(t)} \rightarrow \alpha \quad R_{\beta}(t) = 2G_N \frac{f_{LL,PS}(t)}{f_{PS,PS}(t)} \rightarrow \beta$$

Strategy:

 \triangleright First find m_N from a correlated fit to the effective mass

$$m_{ ext{eff}}(t) = \log\left(\frac{f_{PS,PS}(t)}{f_{PS,PS}(t+1)}\right)
ightarrow m_{N} \quad t \gg 0$$

► Then find G_N from a correlated fit to an effective amplitude

$$G_{N,\text{eff}} = \sqrt{2f_{PS,PS} e^{m_N t}} \rightarrow G_N \quad t \gg 0$$

Finally to calculate α and β we use a ratio of two–point functions

$$R_{\alpha}(t) = 2G_{N} \frac{f_{RL,PS}(t)}{f_{PS,PS}(t)} \rightarrow \alpha \quad R_{\beta}(t) = 2G_{N} \frac{f_{LL,PS}(t)}{f_{PS,PS}(t)} \rightarrow \beta$$

- ► Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
 - Nearly exact chiral symmetry
 - ▶ Inverse lattice spacing $a^{-1} = 1.73(3)$ GeV
- ► Two different lattice volumes
 - ► $V = 16^3 \times 32 \approx 1.8 \text{fm}^3$
 - $V = 24^3 \times 64 \approx 2.7 \text{fm}^3$
- ► One strange quark with mass $am_s = 0.04$
- Two degenerate light quarks with masses $am_{u/d} = 0.005^*$, 0.01, 0.02 or 0.03

- ► Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
 - Nearly exact chiral symmetry
 - ▶ Inverse lattice spacing $a^{-1} = 1.73(3)$ GeV
- ► Two different lattice volumes
 - $V = 16^3 \times 32 \approx 1.8 \text{fm}^3$
 - $V = 24^3 \times 64 \approx 2.7 \text{fm}^3$
- ► One strange quark with mass $am_s = 0.04$
- Two degenerate light quarks with masses $am_{u/d} = 0.005^*$, 0.01, 0.02 or 0.03

- ► Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
 - Nearly exact chiral symmetry
 - ▶ Inverse lattice spacing $a^{-1} = 1.73(3)$ GeV
- ► Two different lattice volumes
 - $V = 16^3 \times 32 \approx 1.8 \text{fm}^3$
 - ► $V = 24^3 \times 64 \approx 2.7 \text{fm}^3$
- ► One strange quark with mass $am_s = 0.04$
- ► Two degenerate light quarks with masses $am_{u/d} = 0.005^*$, 0.01, 0.02 or 0.03

- ► Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
 - Nearly exact chiral symmetry
 - ▶ Inverse lattice spacing $a^{-1} = 1.73(3)$ GeV
- ► Two different lattice volumes
 - $V = 16^3 \times 32 \approx 1.8 \text{fm}^3$
 - ► $V = 24^3 \times 64 \approx 2.7 \text{fm}^3$
- ► One strange quark with mass $am_s = 0.04$
- ► Two degenerate light quarks with masses $am_{u/d} = 0.005^*$, 0.01, 0.02 or 0.03

Fitting

Fit by minimising a correlated χ^2

$$\chi^{2}(p) = \sum_{t,t'} [p_{\text{eff}}(t) - p] C_{tt'}^{-1} [p_{\text{eff}}(t') - p]$$

With correlation Matrix

$$egin{aligned} oldsymbol{\mathcal{C}}_{ ext{tt'}} &= rac{1}{N_{ ext{boot}}} \sum_{n=1}^{N_{ ext{boot}}} \left[p_{ ext{eff}}^{(n)}(t) - ar{p}_{ ext{eff}}(t)
ight] \left[p_{ ext{eff}}^{(n)}(t') - ar{p}_{ ext{eff}}(t')
ight]. \end{aligned}$$

Bootstrap to get central value and error

Fitting

Fit by minimising a correlated χ^2

$$\chi^{2}(p) = \sum_{t,t'} \left[p_{\text{eff}}(t) - p \right] \frac{C_{tt'}^{-1}}{t'} \left[p_{\text{eff}}(t') - p \right]$$

With correlation Matrix

$$egin{aligned} \mathcal{C}_{ exttt{tt'}} &= rac{1}{N_{ ext{boot}}} \sum_{n=1}^{N_{ ext{boot}}} \left[p_{ ext{eff}}^{(n)}(t) - ar{p}_{ ext{eff}}(t)
ight] \left[p_{ ext{eff}}^{(n)}(t') - ar{p}_{ ext{eff}}(t')
ight]. \end{aligned}$$

Bootstrap to get central value and errors

Fitting

Fit by minimising a correlated χ^2

$$\chi^{2}(p) = \sum_{t,t'} \left[p_{\text{eff}}(t) - p \right] \frac{C_{tt'}^{-1}}{t'} \left[p_{\text{eff}}(t') - p \right]$$

With correlation Matrix

$$egin{aligned} \mathcal{C}_{ exttt{tt'}} &= rac{1}{N_{ ext{boot}}} \sum_{n=1}^{N_{ ext{boot}}} \left[p_{ ext{eff}}^{(n)}(t) - ar{p}_{ ext{eff}}(t)
ight] \left[p_{ ext{eff}}^{(n)}(t') - ar{p}_{ ext{eff}}(t')
ight]. \end{aligned}$$

Bootstrap to get central value and errors

Nucleon Mass and amplitude

Nucleon Extrapolations

Low energy constant: α

Low energy constant: β

- ► Finite volume errors
- ► Chiral Extrapolation errors
- ► (Continuum Extrapolation errors)
- ▶ Errors in renormalisation
- ► (Error in Chiral Perturbation Theory)

- Finite volume errors
- Chiral Extrapolation errors
- ► (Continuum Extrapolation errors)
- ▶ Errors in renormalisation
- ► (Error in Chiral Perturbation Theory)

- ▶ Finite volume errors
- Chiral Extrapolation errors
- (Continuum Extrapolation errors)
- ▶ Errors in renormalisation
- ► (Error in Chiral Perturbation Theory)

- ▶ Finite volume errors
- Chiral Extrapolation errors
- (Continuum Extrapolation errors)
- ► Errors in renormalisation
- ► (Error in Chiral Perturbation Theory)

- ► Finite volume errors
- Chiral Extrapolation errors
- ► (Continuum Extrapolation errors)
- ► Errors in renormalisation
- ► (Error in Chiral Perturbation Theory)

Finite Volume Error

► No noticeable effect

Extrapolation Error

- ► Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- ▶ The renormalised operators are

$$\mathcal{O}_{\mathrm{ren}}^A = Z^{AB} \mathcal{O}_{\mathrm{latt}}^B$$

- ▶ A and B label the spin structure, eg LL
- $ightharpoonup Z^{AB}$ is the mixing matrix
- \triangleright \mathcal{O}^{LL} and \mathcal{O}^{RL} mix with a 3rd operator $\mathcal{O}^{A(LV)}$
 - $\Rightarrow Z^{AB}$ is a 3 \times 3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing

- ► Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$\mathcal{O}_{\mathrm{ren}}^A = Z^{AB}\mathcal{O}_{\mathrm{latt}}^B$$

- ▶ A and B label the spin structure, eg LL
- $ightharpoonup Z^{AB}$ is the mixing matrix
- \triangleright \mathcal{O}^{LL} and \mathcal{O}^{RL} mix with a 3rd operator $\mathcal{O}^{A(LV)}$
 - $\Rightarrow Z^{AB}$ is a 3 \times 3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing

- ► Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- ► The renormalised operators are

$$\mathcal{O}_{\mathrm{ren}}^{\mathbf{A}} = Z^{\mathbf{AB}} \mathcal{O}_{\mathrm{latt}}^{\mathbf{B}}$$

- ► A and B label the spin structure, eg LL
- $ightharpoonup Z^{AB}$ is the mixing matrix
- ▶ \mathcal{O}^{LL} and \mathcal{O}^{RL} mix with a 3rd operator $\mathcal{O}^{A(LV)}$ ⇒ Z^{AB} is a 3 × 3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing

- ► Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$\mathcal{O}_{\mathrm{ren}}^{A} = Z^{AB} \mathcal{O}_{\mathrm{latt}}^{B}$$

- ▶ A and B label the spin structure, eg LL
- Z^{AB} is the mixing matrix
- ▶ \mathcal{O}^{LL} and \mathcal{O}^{RL} mix with a 3rd operator $\mathcal{O}^{A(LV)}$ ⇒ Z^{AB} is a 3 × 3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing

- ► Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- ► The renormalised operators are

$$\mathcal{O}_{\mathrm{ren}}^A = Z^{AB}\mathcal{O}_{\mathrm{latt}}^B$$

- ▶ A and B label the spin structure, eg LL
- \triangleright Z^{AB} is the mixing matrix
- \triangleright \mathcal{O}^{LL} and \mathcal{O}^{RL} mix with a 3rd operator $\mathcal{O}^{A(LV)}$
 - $\Rightarrow Z^{AB}$ is a 3 \times 3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing

- ► Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$\mathcal{O}_{\mathrm{ren}}^A = Z^{AB}\mathcal{O}_{\mathrm{latt}}^B$$

- ▶ A and B label the spin structure, eg LL
- \triangleright Z^{AB} is the mixing matrix
- $ightharpoonup \mathcal{O}^{LL}$ and \mathcal{O}^{RL} mix with a 3rd operator $\mathcal{O}^{A(LV)}$
 - $\Rightarrow Z^{AB}$ is a 3 \times 3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing

$$\left(\begin{array}{c} \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \end{array}\right)^{-1} \left(\begin{array}{c} \\$$

$$\mathcal{G}_{abc,\alpha\beta\gamma\delta}^{A}(p^{2}) = \epsilon^{abc}(C\Gamma)_{\alpha'\beta'}\Gamma'_{\delta\gamma'}\langle Q_{\alpha'\alpha}^{a'a}(p)Q_{\beta'\beta}^{b'b}(p)Q_{\gamma'\gamma}^{c'c}(p)\rangle$$

where

$$Q_{\alpha'\alpha}^{a'a} = \langle S_{\alpha'\alpha''}^{a'a''}(p) \rangle^{-1} S_{\alpha''\alpha}^{a''a}(p)$$

and Γ and Γ' are the matrices which appear in $\mathcal{O}^{\mathcal{F}}$

$$\left(\begin{array}{c} \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \end{array}\right) \left(\begin{array}{$$

$$\mathcal{G}^{A}_{abc,\alpha\beta\gamma\delta}(p^2) = \epsilon^{abc}(C\Gamma)_{\alpha'\beta'}\Gamma'_{\delta\gamma'}\langle Q^{a'a}_{\alpha'\alpha}(p)Q^{b'b}_{\beta'\beta}(p)Q^{c'c}_{\gamma'\gamma}(p)\rangle$$

where

$$Q_{\alpha'\alpha}^{a'a} = \langle S_{\alpha'\alpha''}^{a'a''}(p) \rangle^{-1} S_{\alpha''\alpha}^{a''a}(p)$$

and Γ and Γ' are the matrices which appear in $\mathcal{O}^{\mathcal{F}}$

$$\left(\begin{array}{c} \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \end{array}\right)^{-1} \left(\begin{array}{c} \\$$

$$\mathcal{G}_{abc,\alpha\beta\gamma\delta}^{A}(p^2) = \epsilon^{abc}(C\Gamma)_{\alpha'\beta'}\Gamma'_{\delta\gamma'}\langle Q_{\alpha'\alpha}^{a'a}(p)Q_{\beta'\beta}^{b'b}(p)Q_{\gamma'\gamma}^{c'c}(p)\rangle$$

where

$$Q_{\alpha'\alpha}^{a'a} = \langle S_{\alpha'\alpha''}^{a'a''}(p) \rangle^{-1} S_{\alpha''\alpha}^{a''a}(p)$$

and Γ and Γ' are the matrices which appear in \mathcal{O}^A

$$\left(\begin{array}{c} \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \end{array}\right)^{-1} \left(\begin{array}{c}$$

$$\mathcal{G}_{abc,\alpha\beta\gamma\delta}^{A}(p^{2}) = \epsilon^{abc}(C\Gamma)_{\alpha'\beta'}\Gamma'_{\delta\gamma'}\langle Q_{\alpha'\alpha}^{a'a}(p)Q_{\beta'\beta}^{b'b}(p)Q_{\gamma'\gamma}^{c'c}(p)\rangle$$

where

$$Q_{\alpha'\alpha}^{a'a} = \langle S_{\alpha'\alpha''}^{a'a''}(p) \rangle^{-1} S_{\alpha''\alpha}^{a''a}(p)$$

and Γ and Γ' are the matrices which appear in \mathcal{O}^A

$$Z_q^{-3/2} Z^{BC} M^{CA} = \delta^{BA}$$

▶ Where the matrix *M* is,

$$\mathcal{M}^{AB}=\mathcal{G}^{A}_{abc,lphaeta\gamma\delta}(p^2)P^{B}_{abc,etalpha\delta\gamma}$$

- ▶ and the projection matrices $P^{A}_{abc,\beta\alpha\delta\gamma}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_{a}=1$ and $Z^{BC}=\delta^{BC}$.
- $ightharpoonup Z^{AB}$ can then be calculated from M^{AB} using the renormalization condition

$$Z_q^{-3/2} Z^{BC} M^{CA} = \delta^{BA}$$

► Where the matrix *M* is,

$$M^{AB} = \mathcal{G}_{abc,\alpha\beta\gamma\delta}^{A}(p^2)P_{abc,\beta\alpha\delta\gamma}^{B}$$

- ▶ and the projection matrices $P^A_{abc,\beta\alpha\delta\gamma}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_q=1$ and $Z^{BC}=\delta^{BC}$.
- $ightharpoonup Z^{AB}$ can then be calculated from M^{AB} using the renormalization condition

$$Z_q^{-3/2}Z^{BC}M^{CA}=\delta^{BA}$$

Where the matrix M is,

$$M^{AB} = \mathcal{G}_{abc,\alpha\beta\gamma\delta}^{A}(p^2) P_{abc,\beta\alpha\delta\gamma}^{B}$$

- ▶ and the projection matrices $P_{abc,\beta\alpha\delta\gamma}^{A}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_{a}=1$ and $Z^{BC}=\delta^{BC}$.
- $ightharpoonup Z^{AB}$ can then be calculated from M^{AB} using the renormalization condition

$$Z_q^{-3/2} Z^{BC} M^{CA} = \delta^{BA}$$

Where the matrix M is,

$$M^{AB} = \mathcal{G}^{A}_{abc,\alpha\beta\gamma\delta}(p^2) P^{B}_{abc,\beta\alpha\delta\gamma}$$

- ▶ and the projection matrices $P^A_{abc,\beta\alpha\delta\gamma}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_q=1$ and $Z^{BC}=\delta^{BC}$.
- $ightharpoonup Z^{AB}$ can then be calculated from M^{AB} using the renormalization condition

M^{AB}

- ► Perform a chiral extrapolation
- lacktriangle Match to the $\overline{
 m MS}$ scheme at 2GeV
- This gives $U^{\overline{\mathrm{MS}}\leftarrow\mathrm{latt}}(2\,GeV)_{LL}=0.662(10)$ $U^{\overline{\mathrm{MS}}\leftarrow\mathrm{latt}}(2\,GeV)_{RL}=0.664(8)$
- ▶ Additional systematic error of 8% from the matching

- Perform a chiral extrapolation
- lacktriangle Match to the $\overline{
 m MS}$ scheme at 2GeV
- $m{
 u}^{
 m MS} \leftarrow {
 m latt}(2 GeV)_{LL} = 0.662(10) \ U^{
 m MS} \leftarrow {
 m latt}(2 GeV)_{RL} = 0.664(8)$
- ▶ Additional systematic error of 8% from the matching

- Perform a chiral extrapolation
- lacktriangle Match to the $\overline{
 m MS}$ scheme at 2GeV
- $m{
 u}^{
 m MS} \leftarrow {
 m latt}(2 GeV)_{LL} = 0.662(10) \ U^{
 m MS} \leftarrow {
 m latt}(2 GeV)_{RI} = 0.664(8)$
- ▶ Additional systematic error of 8% from the matching

Summary

- $\sim \alpha = -0.0112(12)(22)$
- $\beta = 0.0120(13)(23)$

Outlook

- ► The direct calculation is currently underway
- ► Example: Preliminary results for the $W_0^{LL}(p \to \pi^+ + \nu)$, on the $16^3 \times 32$ lattice, with valence quark mass $am_u = 0.03$

Outlook

- ► The direct calculation is currently underway
- ► Example: Preliminary results for the $W_0^{LL}(p \to \pi^+ + \nu)$, on the $16^3 \times 32$ lattice, with valence quark mass $am_u = 0.03$

$$\Gamma = \mathrm{LEC}^2 \times A_{\mathrm{QCD}} \times A_{\mathrm{GUT}}$$

$$\Gamma = \underline{LEC^2} \times A_{\mathrm{QCD}} \times A_{\mathrm{GUT}}$$

$$\Gamma = \mathrm{LEC}^2 \times \textcolor{red}{A_{\mathrm{QCD}}} \times \textcolor{blue}{A_{\mathrm{GUT}}}$$

$$\Gamma = \mathrm{LEC}^2 \times A_{\mathrm{QCD}} \times \textcolor{red}{A_{\mathrm{GUT}}}$$

$$\Gamma = \mathrm{LEC}^2 \times A_{\mathrm{QCD}} \times A_{\mathrm{GUT}}$$

▶ We can put bounds on the GUT scale physics:

Decay Mode	Lifetime bound(yrs)	$A_{ m GUT}$ bound $(M_{ m GUT}^{-4})$
$p \rightarrow e^+ \pi^0$	$> 8.2 \times 10^{33}$	< 44
$p \rightarrow e^+ \pi^0$	$> 8.2 \times 10^{33}$	< 37
$p ightarrow K^+ ar{ u}$	$> 2.3 \times 10^{33}$	< 76
$n \rightarrow K^0 \bar{\nu}$	$> 1.3 \times 10^{32}$	< 733

► For example:

$$p \rightarrow \pi^0 e^+$$
 via X Boson Exchange
Minimal SU(5) SUSY GUT

 $ightharpoonup A_{\mathrm{GUT}}$ is given by

$$A_{\rm GUT} = \frac{g_5^4 A_R^2}{M_X^4} \left| 1 + (1 + V_{ud}^2)^2 \right|$$

► Can put a bound on M_X $M_X > 5 \times 10^{15}$

► For example:

$$p \rightarrow \pi^0 e^+$$
 via X Boson Exchange
Minimal SU(5) SUSY GUT

► A_{GUT} is given by

$$A_{\text{GUT}} = \frac{g_5^4 A_R^2}{M_X^4} \left| 1 + (1 + V_{ud}^2)^2 \right|$$

► Can put a bound on M_X $M_X > 5 \times 10^{15}$

► For example:

$$p \rightarrow \pi^0 e^+$$
 via X Boson Exchange
Minimal SU(5) SUSY GUT

► A_{GUT} is given by

$$A_{\mathrm{GUT}} = \frac{g_5^4 A_R^2}{M_X^4} \left| 1 + (1 + V_{ud}^2)^2 \right|$$

► Can put a bound on M_X $M_X > 5 \times 10^{15}$